U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Cancer Etiology and Natural History: A Web Tool for **Age-Period-Cohort** Analysis

Philip S. Rosenberg David P. Check William F. Anderson &

The NCI Center for Biomedical Informatics and Information Technology (CBIIT)

> Biostatistics Branch Division of Cancer Epidemiology and Genetics National Cancer Institute

06 March 2014, DCEG Seminar

1

View History Bookmarks Tools Help riod Cohort Analysis Tool +	Sell per	2	1.48	R.T.	-						
analysistools.nci. nih.gov /apc/#							C	8 - Google			۹
risited 🧶 Getting Started 🗌 Web of Knowledge [v 😣	Home - PubMed	- NCBI	D3.js	- Data-Driven D							
National Cancer Institute						at the	National	Institutes of I	Health Iv	www.cancer.go	v
											_
DIVISION OF CANCER EP				ND GE FICS E					GE		ORT
Title 1 Help	Input	Ag	e Devia	ions Per	Deviatio	ons Coh	Deviatior	ns Long	Age	Cross Age	
	Long 2	Cros	sRR	Fitted Temp	oral Trei	nd Perio	dRR	CohortRR	Local	Drifts	
Description											
Description											
	_	Age	Count	Population	Count	Population	Count	Population	Count	Population	
Start Year Start Age Interval (Years)						500		~	00		
							-5	202	5		
	Age						17	2			
Copy and paste into table on right or upload a	<					AC	50				
csv with population and count information				0	0	3					
Browse No file selected.				7	50-						
				L							
Clear Calculate											
											-

- What does it do?
- Why is that important?
- Who built it, and how?
- How do I use it?

Acknowledgments

CBIT Center for Biomedical Informatics and Information Technology

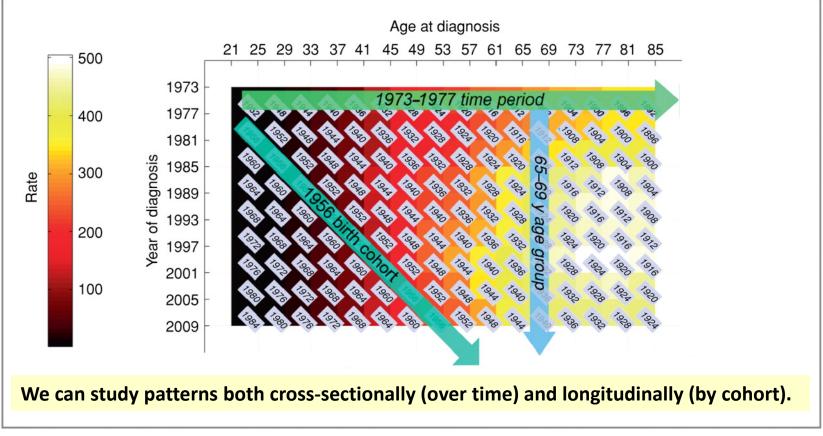
- Robert Shirley, NCI CBIIT
- Sue Pan, NCI CBIIT
- Larry Brem, Leidos Biomedical Research, Inc. (NCI CBIIT Dev Team Contractor)
- Brent Coffey, Leidos Biomedical Research, Inc. (NCI CBIIT Dev Team Contractor)
- Shaun Einolf, Leidos Biomedical Research, Inc. (NCI CBIIT Dev Team Contractor)
- Sula Rajapakse, Leidos Biomedical Research, Inc. (NCI CBIIT Dev Team Contractor
- Cuong Nguyen, SRA International, Inc. (NCI CBIIT Systems Team Contractor)

Division of Cancer Epidemiology & Genetics

Discovering the causes of cancer and the means of prevention

- Carl McCabe, Office of Division Operations and Analysis
- Sholom Wacholder, Nicolas Wentzensen, Christine Fermo
 - http://analysistools.nci.nih.gov/meanstorisk/

Outline


- The APC Model
 - Overview
 - Examples from the literature
- The Web Tool
 - What's in it (and why)
 - How it works

APC Model: Overview

- Macro-epidemiological model for population-based cancer surveillance data
 - o Incidence and Mortality
 - SEER, IARC, other large-scale open cohorts
- Parametric approach
 - o complements traditional descriptive approaches
- Quantification (via *parameters* and *functions*)
 - o Burden
 - o Trends
 - Natural History
 - o Etiology
 - o Disparity

APC Model: Data

A registry is a cohort of cohorts . . .

Rate matrix or Lexis diagram for invasive female breast cancer.

Rosenberg P S , and Anderson W F Cancer Epidemiol Biomarkers Prev 2011;20:1263-1268

©2011 by American Association for Cancer Research

APC Model: Parameters from Data Longitudinal Form $\rho_{ac} = \mu + (\alpha_L + \pi_L)(a - \overline{a}) + (\pi_L + \gamma_L)(c - \overline{c}) + \tilde{\alpha}_a + \tilde{\pi}_p + \tilde{\gamma}_c$ Longitudinal Net Drift Deviations Age Trend **Cross-sectional Form** $\rho_{ap} = \mu + (\alpha_L - \gamma_L)(a - \overline{a}) + (\pi_L + \gamma_L)(p - \overline{p}) + \tilde{\alpha}_a + \tilde{\pi}_p + \tilde{\gamma}_c$ Cross-Sectional

APC Model: Putting the pieces together

Through independent and collaborative descriptive studies, we developed a panel of standard and novel **functions**** and corresponding **hypothesis tests** that appear to be effective in identifying *signatures* or *patterns* in disease rates for many types of cancers.

****** linear combination of estimable parameters in the **APC** Model

APC Model: Key Parameters, Functions, and Tests

•Net Drift is the single most important parameter!

- Model analogue of EAPC adjusted for cohort effects
- Determines ratio of Longitudinal to Cross-sectional Age Curves

Age effects (Longitudinal and Cross-sectional Age Curves)
Period effects (Fitted Temporal Trends, Period RR)
Cohort effects (Cohort RR; Local Drifts = age-specific EAPC)

•The Significance Test for Local Drifts is the second most important APC statistic!

• Tells you if you have important cohort effects

Examples from the literature

- The APC Model
 - Overview
 - Examples from the literature
- The Web Tool
 - What's in it (and why)
 - How it works

Age Effects

Age Curve)

Examples from the literature

International Journal of Cancer

Trimodal age-specific incidence patterns for Burkitt lymphoma in the United States, 1973-2005

Sam M. Mbulaiteye¹, William F. Anderson², Kishor Bhatia¹, Philip S. Rosenberg², Martha S. Linet³ and Susan S. Devesa²

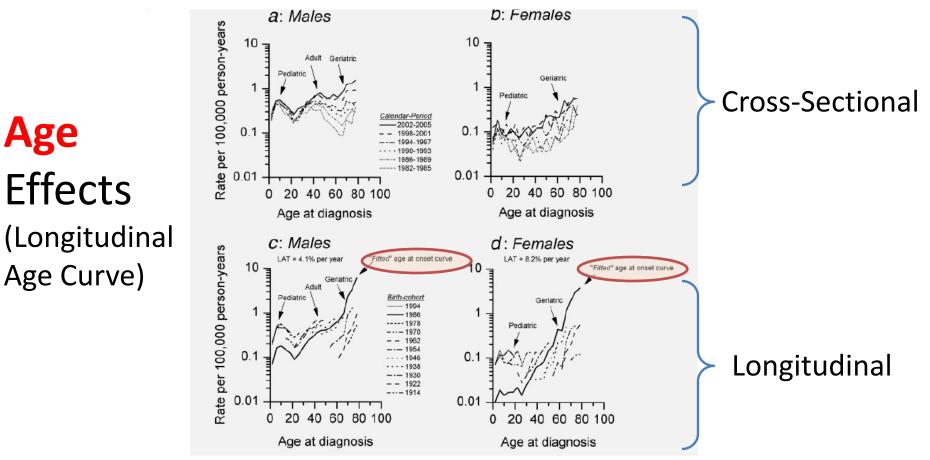


Figure 2. Burkitt lymphoma APC model-based expected period- and cohort-specific age-specific incidence rates by sex, SEER 9, 13 and17 registries, 1982-2005. Panels c and d included "fitted" age-at-onset curves (see Methods). Cases diagnosed during 1973-1981 were excluded because of sparse numbers. LAT = longitudinal age trend.

VOLUME 31 · NUMBER 17 · JUNE 10 2013

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Ovarian Cancer Incidence Trends in Relation to Changing Patterns of Menopausal Hormone Therapy Use in the United States

Hannah P. Yang, William F. Anderson, Philip S. Rosenberg, Britton Trabert, Gretchen L. Gierach, Nicolas Wentzensen, Kathleen A. Cronin, and Mark E. Sherman

All authors: National Cancer Institute, Bethesda, MD.

Published online ahead of print at www.joo.org on May 6, 2013.

Supported entirely by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National InstiA B S T R A C T

Purpose

After a report from the Women's Health Initiative (WHI) in 2002, a precipitous decline in menopausal hormonal therapy (MHT) use in the United States was linked to a decline in breast cancer incidence rates. Given that MHT use is also associated with increased ovarian cancer risk, we tested whether ovarian cancer incidence rates changed after 2002.

Ovarian Cancer Incidence and Menopausal Hormone Therapy Use Pattern

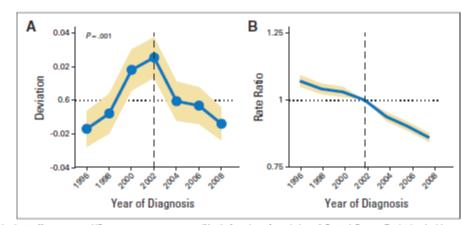


Fig 2. Age-period-cohort effects among US women age \geq 50 years (North American Association of Central Cancer Registries Incidence, 1995 to 2008). Point estimates are shown in blue, with 95% CIs shaded in gold. (A) The significance of period deviations was assessed by contrasting the three time periods before the Women's Health Initiative (WHI); 1995 to 1996, 1997 to 1998, and 1999 to 2000) with the three time periods after WHI (2003 to 2004, 2005 to 2006, and 2007 to 2008). P value is for change in the slopes of the period deviations, adjusted for age and cohort effects. (B) Period relative risks were calculated as rate ratios adjusted for age and birth cohort effects, comparing the ovarian cancer incidence rates for a given time period with the rate of a referent period (the 2002 time period in this analysis). The period relative risks declined from more than 1.0 before the 2002 referent period, after which the period relative risks were significantly less than 1.0.

Period

Effects (Deviations, Period RR) Cohort

Effects

(Cohort RR)

Examples from the literature

VOLUME 30 · NUMBER 22 · AUGUST 1 2012

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Increasing Lung Cancer Death Rates Among Young Women in Southern and Midwestern States

A B S T R A C T

Ahmedin Jemal, Jiemin Ma, Philip S. Rosenberg, Rebecca Siegel, and William F. Anderson

Ahmedin Jemal, Jiemin Ma, and Rebecca Siegel, Surveillance Research Program, American Cancer Society, Atlanta, GA; and Philip S. Rosenberg and William F. Anderson, National Cancer Institute, Rockville, MD. t

Submitted February 23, 2012; accepted May 7, 2012; published online ahead of print at www.jco.org on June 25, 2012.

Purpose

Previous studies reported that declines in age-specific lung cancer death rates among women in the United States abruptly slowed in women younger than age 50 years (ie, women born after the 1950s). However, in view of substantial geographic differences in antitobacco measures and sociodemographic factors that affect smoking prevalence, it is unknown whether this change in the trend was similar across all states.

Increasing Lung Cancer Death Rates Among Young Women

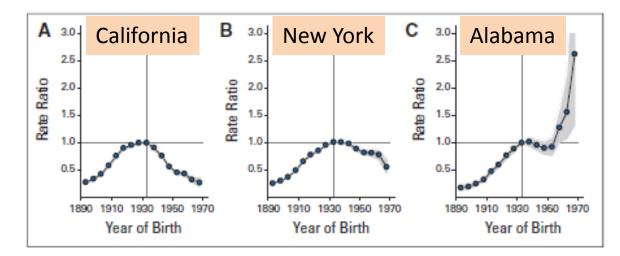


Fig 2. Rate ratios of lung cancer death rates according to birth cohort among white women for (A) California, (B) New York, and (C) Alabama. The reference group is the 1933 birth cohort, and the shaded areas denote the 95% point-wise Cls of rate ratios.

Overview

Examples from the literature

IJC International Journal of Cancer

Divergent estrogen receptor-positive and -negative breast cancer trends and etiologic heterogeneity in Denmark

William F. Anderson¹*, Philip S. Rosenberg¹*, Lucia Petito¹, Hormuzd A. Katki¹, Bent Ejlertsen², Marianne Ewertz³, Birgitte B. Rasmussen⁴, Maj-Britt Jensen² and Niels Kroman⁵

Cohort Effects (Local Drifts)

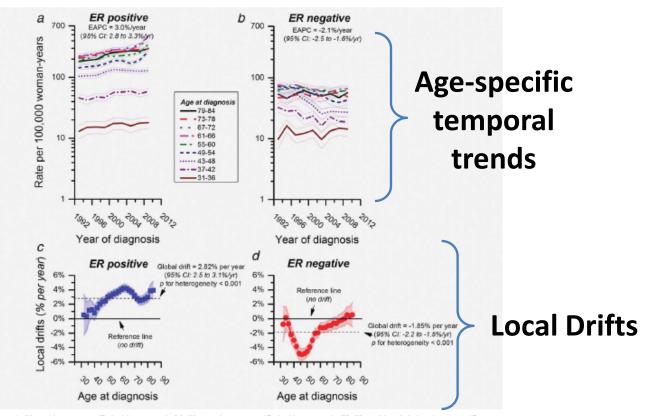


Figure 2. ER-positive age-specific incidence trends (a), ER-negative age-specific incidence trends (b), ER-positive global and age-specific (local) net drifts (c) and ER-negative global and age-specific (local) net drifts (d). The global net drift is analogous to the estimated annual percentage change (EAPC) in the age-standardized incidence rate, whereas the local net drifts provide estimates of the corresponding EAPCs for individual age groups. See text for details. The p value for heterogeneity tests the null hypothesis that all local drifts are no different than the global drift.

How it works

Outline

- The APC Model
 - Overview
 - Examples from the literature
- The Web Tool
 - What's in it (and why)
 - How it works

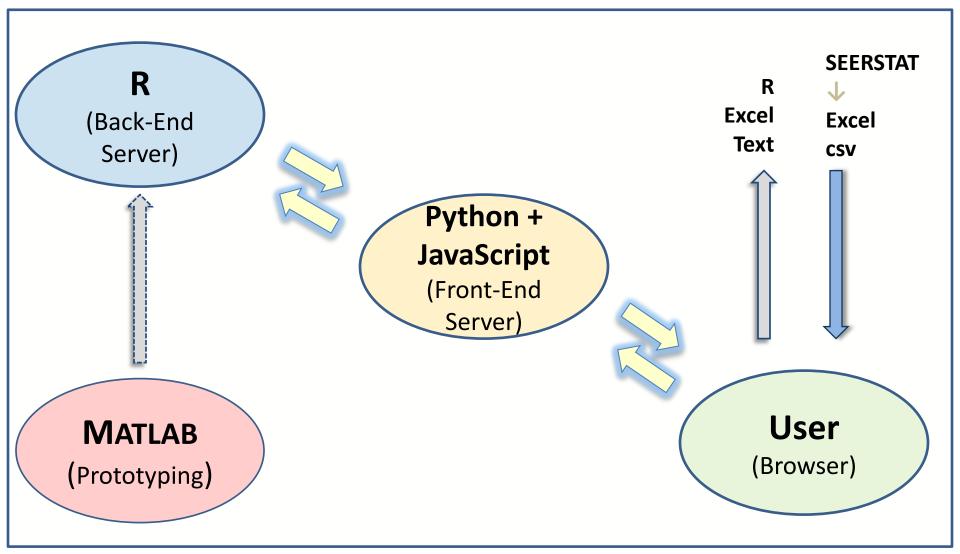
All of the **APC** functions (and corresponding hypothesis tests) shown in *Examples from the literature* are produced by the Web Tool.

Key Functions

analysistools-dev.nci. nih.gov /apc/help.html		
he most important functions calculated by th	e web tool are summarized in the <u>Table of Key Functions</u> using the following conventions:	
• The APC model is defined over A age g	groups and <i>P</i> calendar periods with equal intervals.	
	, and birth cohort define standard reference values <i>a</i> , <i>p</i> and <i>c</i> , respectively.	
	period, or cohort categories, the reference value is the lower of the two central values.	
	confidence limits. All values labeled CI Hi are upper 95% confidence limits.	
Table of Key Functions	Interpretation	
Nomenclature	Interpretation Expected age-adjusted rates over time	
-	Interpretation Expected age-adjusted rates over time Annual percentage change of the expected age-adjusted rates over time	
Nomenclature Fitted Temporal Trend	Expected age-adjusted rates over time	
Nomenclature Fitted Temporal Trend Net Drift	Expected age-adjusted rates over time Annual percentage change of the expected age-adjusted rates over time	
Nomenclature Fitted Temporal Trend Net Drift Local Drifts	Expected age-adjusted rates over time Annual percentage change of the expected age-adjusted rates over time Annual percentage change of the expected age-specific rates over time	
Nomenclature Fitted Temporal Trend Net Drift Local Drifts Cross-Sectional Age Curve (Cross Age)	Expected age-adjusted rates over time Annual percentage change of the expected age-adjusted rates over time Annual percentage change of the expected age-specific rates over time Expected age-specific rates within a given calendar period	

Hypothesis Tests

Age Period Cohort Analysis Tool - analysistools-dev.nci.nih.gov/apo		
Statistical hypothesis tests of	calculated by the web tool are summarized in the <u>Table of Hypothesis Tests.</u>	
included in each test. The w evidence that the Null Hypo	i-Square distribution when the Null Hypothesis is true. The df (degrees of freedom) co reb tool reports P-values; values less than 0.05 are often considered 'statistically signific othesis is unlikely to be correct.	-
Table of Hypothesis Null Hypothesis	Inplications	Degrees of Freedom
Net drift = 0	Fitted temporal trends are stable (i.e., flat with no change) over time. Fitted longitudinal and cross-sectional age curves are equal.	1
All age deviations = 0	Fitted longitudinal and cross-sectional age curves are log-linear (i.e., log-additive).	A - 2
All period deviations = 0	Fitted temporal trends and period rate ratios are log-linear (i.e., log-additive).	P - 2
All cohort deviations = 0	Cohort rate ratios are log-linear; all local drifts equal the net drift.	C - 2
All period rate ratios = 1	Net drift is 0 and fitted temporal trends are constant; Cross-sectional age curve describes age incidence pattern in every period.	<i>P</i> - 1
	Net drift is 0 and all local drifts are 0;	C - 1
All cohort rate ratios = 1	Longitudinal age curve describes age incidence pattern in every cohort.	


How it works

Web Tool: Usability

- We paid a lot of attention to **workflow.**
- The Web Tool promotes **reproducible research**.
- We think it is really simple to use.

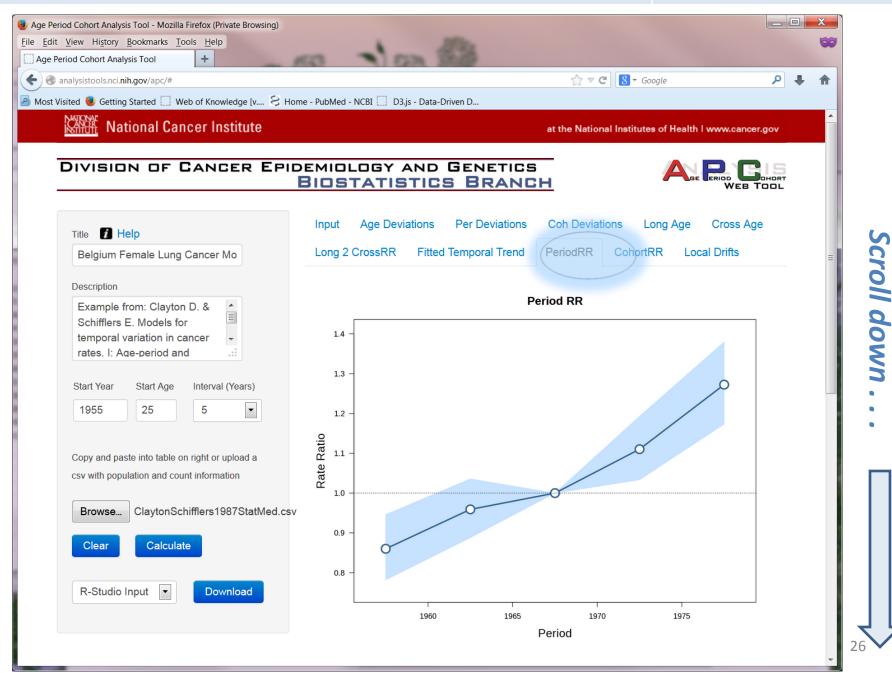
How it works

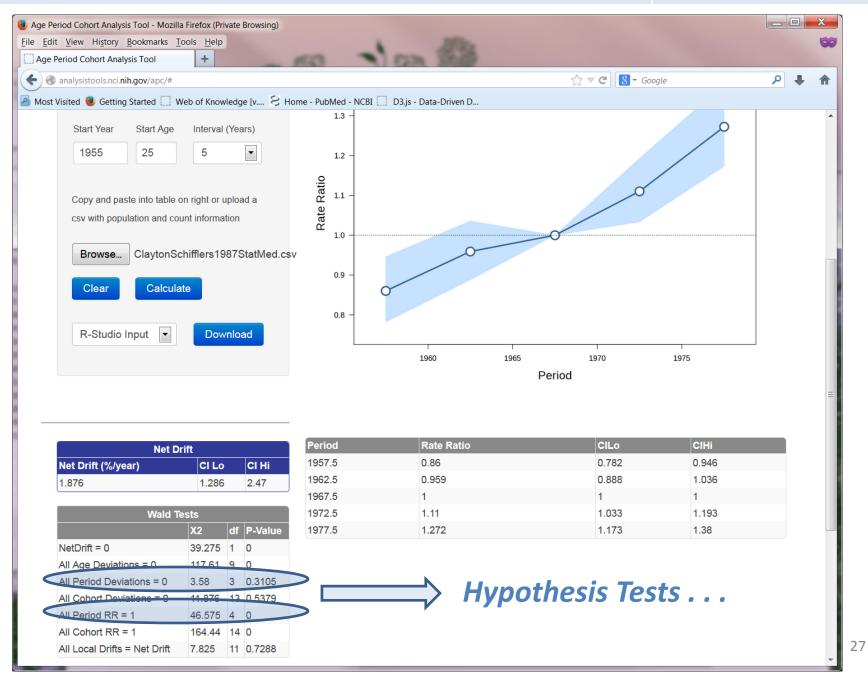
Web Tool: Architecture

Data Input

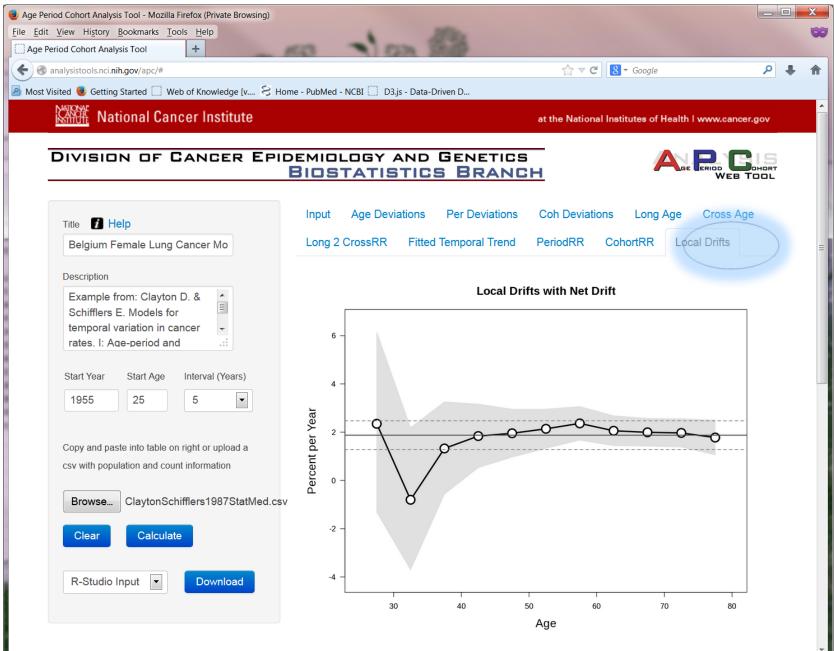
😻 Age Period Cohort Analysis Tool - Mozilla Firefox (Private Browsing) AND analysistools-dev.nci.nih.gov/apc/help.html Getting started Input data for the web tool consist of Count and Population data for particular age groups over calendar time, in the form of a matrix of rows with paired columns. Rows correspond to particular age groups and columns correspond to calendar time periods. The age and period intervals must all be equal, i.e. if 5-year age groups are used then 5-year calendar periods must also be used. The data can be input by copy-and-paste from an Excel worksheet or file upload of a comma-separated-values (csv) file. To input from Excel: 1. Copy the paired columns of data you want to analyze from your spreadsheet, right-click inside the empty matrix on the Input tab, and paste your selection. 2. Fill in the information (meta-data) on the left hand side of the Input page: Title - describe your data Description - add optional details • Start Year - list the first calendar year of the first calendar period of your data, for example, use 1990 for the interval 1990 - 1994 Start Age - list the first age of the first age group of your data, for example use 30 for the interval 30 - 34 • Interval (Years) - the width of the age and period intervals, for example use 1 for single-year data, 2 for two-year data, 5 for five-year data (e.g., 1990 - 1994), etc. Click the calculate button

Data Input Using Excel

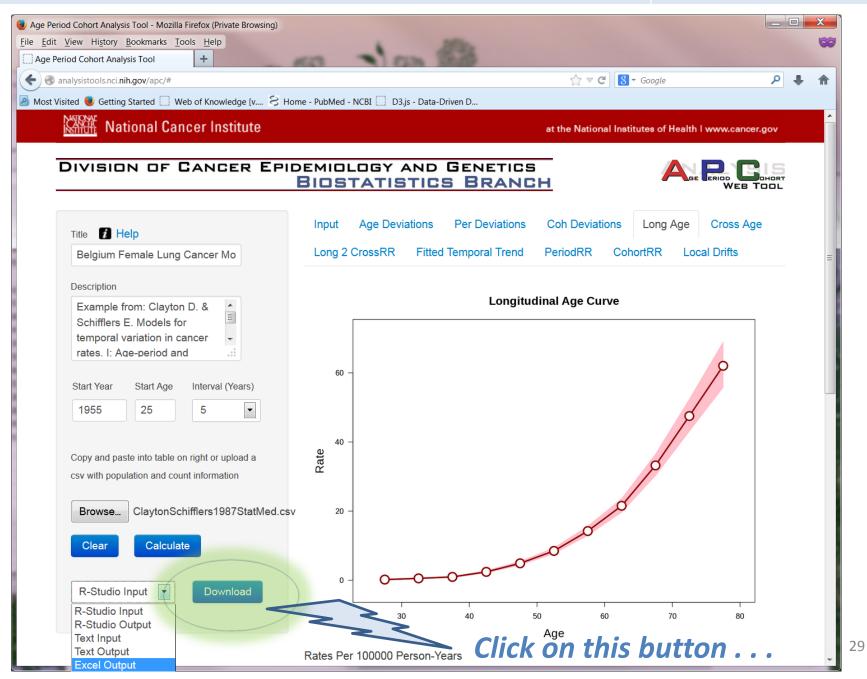

	1 2	3] -			ClaytonS	chifflers198	7StatMed	d.xlsx - Microsoft	Excel				X
Fil	e Hoi	me Insert Page	Layout Formulas	Data Review	View							ه 🕜 د	- 8 %
	K Cut	y *			W Nrap		General	-			🕹 🚽 Fill	, Zr m	
Past •	e 🍼 Form	nat Painter B I	<u>u</u> • 🗄 • 🌺 •	<u>A</u> - ≣ ≣ ≡	🛊 🛊 📴 Merge	& Center 🝷	\$ - %		Conditional Format as	Cell Insert Del Styles *	ete Format	ar * Sort & Find & Filter * Select *	
	Clipboard	Es.	Font	E.	Alignment	G.	N	umber 🗔	Styles	Ce	lls	Editing	
	A1	- (e	f f Lung Cance	er Mortality, Fema	les, Belgium								~
													•
	А	В	С	D	E	F		G	Н	I	J	К	L
1		er Mortality, Femal											
2		1955 - 1959 event		1960 - 1964 event	1960 - 1964 offset	1965 - 19	69 event	1965 - 1969 offs	et 1970 - 1974 even	t 1970 - 1974 offse	et 1975 - 1979 even	nt 1975 - 1979 offset	t
	25 - 29	3	1578947.368	2	1538461.538		7						
	30 - 34	11	1666666.667	16	1632653.061		11	1527777.77				7 1228070.175	
	35 - 39	11	1410256.41	22	1666666.667		24	1632653.06					
-	40 - 44	36	1348314.607	44	1392405.063		42	1660079.05					
	45 - 49	77	1590909.091	74	1321428.571		68	1379310.34					
	50 - 54	106	1606060.606	131	1541176.471		99	1294117.64					
	55 - 59	157	1515444.015	184	1533333.333		189	1490536.27					
	60 - 64	193	1307588.076	232	1417226.634		262	1455555.55					
	65 - 69	219	1066731.612	267	1181415.929		323	1297188.75					
	70 - 74	223	849847.561	250	902527.0758		308	1010830.32					
	75 - 79	198	591574.5444	214	636715.2633		253	688060.919			. 31	2 690265.4867	=
	Example f	rom: Clayton D. & S	chifflers E. Models	for temporal variat	ion in cancer rates	. I: Age-per	iod and a	age-cohort mode	ls. Stat. Med., 1987;	6:449-467.			
15													
16													
17													
18													
19													
20													
21 22													
22													
23													
24													
25													
26													
20	▶ ► Fv	ents & Offset - Lu	ng Cancer M 🦄	/									▶ []
		Ches & Offset Eur	ig cancer in / 🐷									0% (=)	
Read	У	_										J70 0 0	Ū,


How it works

Data Input Using CSV


X	1 2 3	- -	- Bernet Co	mark Realized	- Transf		Cla	ytonSchifflers	1987StatM	ed.csv - Mic	rosoft E	xcel	-								X
	ile Home	e Insert	Page Layou			Review \	View												۵	0 -	e X3
	F & H & Cut		libri	- 11 -	A A ≡			Wrap Text	Genera	al	*	<u> </u>			←	*		Σ AutoSum	* 2 7	ñ	
Pas	te	R	ΙŪ·	🗄 🔹 🖄	• <u>A</u> • =		E 🗄 🔤 I	Verge & Cente	r - \$ -	% , .00			al Formata		Insert	Delete F	ormat	Clear *	Sort & Filter ▼		
	Clipboard	E.	F	ont	- Fa		Alignment		Gi .	Number	5		Styles	,		Cells			Editing		
	A1	• (fx	Title: Bel	gium Fema	lle Lung Can	ncer Mortal	ity													
															1			1	1		
	A	В	С	D	E	F	G	H	I.	J	K		L	Μ	N		0	Р	Q	R	
	Title: Belgi					4								dele Chit	Mad. 4	007.0	440 44	- 7			
	Start Year:		from: Clayt	ton D. & Scr	NITTIERS E. IV	lodels for t	emporal va	riation in ca	ncer rates	. I: Age-peri	iod and	age-co	onort mo	dels. Stat.	. Med., 1	987; 6:	449-40	o7.			
	Start Age: 2																				
	Interval (Ye																				
6		1578947	2	1538462	7	1400000	3	1578947	10	1428571											
7	11	1666667	16	1632653	11	1527778	10			1228070											
8	11	1410256	22	1666667	24	1632653	25	1524390	15	1136364											
9	36	1348315	44	1392405	42	1660079	53	1568047	48	1221374											
10	77	1590909	74	1321429	68	1379310	99	1636364	88	1288433											
11	106	1606061		1541176	99	1294118		1340888		1285988											
12		1515444		1533333	189	1490536		1255230		986072.4											
13	193	1307588		1417227	262			1414773		999581.8											
14		1066732		1181416	323			1335799		1048930											
15		849847.6 591574.5		902527.1 636715.3	308			1115322 773632.4		930595.3 690265.5											
16 17	198	591574.5	214	030/15.5	255	688060.9	330	773032.4	512	090205.5											
17 18																					
19																					
20																					
21																					
22																					
23																					
24																					
25																					
• •	► ► Clay	tonSchiffl	ers1987St	atMed 🎊	/						Γ	•					_				
Rea	dy																	III 100% 🤆	9	Ū	+

ti de chort Analysis Tool - Mozells Firetox (Phone Browsand) 2 Meer Helpow Bacokmass (Doi: Helpow Prode Coord Analysis Tool - Meerican Angewige/# Wated Coord Participation Coord Population Coord Population Courd							
isited 粵 Getting Started 🗌 Web of Knowledge [v 😂 Home	e - PubMed	- NCBI	D3.js - Data-Driver	n D			
National Cancer Institute				at	the National Institut	es of Health I www.ca	ancer.gov
							B IS
ΕΕ	<u> 3105</u>	TA	TISTICS	BRANCH			
	Input	Ag	e Deviations P	er Deviations C	oh Deviations	Long Age Cross	s Age
		Cros	sRR Fitted Ter	mooral Trend P	eriodRR Cohor	RR Local Drifts	
Beigium Female Lung Cancer Mo	Long 2	. 0100				Loodi Dina	,
Description				Delaisse	5 0	No 4-114 -	
Example from: Clayton D. &			Example from: Clavt		-		tes. I: Age-r
Schifflers E. Models for							
temporal variation in cancer 👻		-	1955 - 1959	1960 - 1964	1965 - 1969	1970 - 1974	1975
rates. I: Age-period and		Age	Count Population	Count Population	Count Population	Count Population	Count Po
		25	3 1,578,947.368	2 1,538,461.538	7 1,400,000	3 1,578,947.368	10 1,4
Start Year Start Age Interval (Years)		30	11 1,666,666.667	16 1,632,653.061	11 1,527,777.778	10 1,408,450.704	7 1,2
	(sc	35	11 1,410,256.41	22 1,666,666.667	24 1,632,653.061	25 1,524,390.244	15 1,1
1955 25 5 🔽		40	36 1,348,314.607	44 1,392,405.063	42 1,660,079.051	53 1,568,047.337	48 1,22
1955 25 5 💌	rou		77 1 590 909 091	74 4 004 400 574	68 1,379,310.345	99 1,636,363.636	88 1,2
1955 25 5 🔹	e Grou	45	11 1,000,000.001	74 1,321,428.571		440 4 040 007 60	134 1,2
	Age ' Age Grou				99 1 ,294,117.647	142 1,340,887.03	
Copy and paste into table on right or upload a	Age (11 Age Grou	50	106 1,606,060.606	131 1,541,176.471			177 98
Copy and paste into table on right or upload a	Age (11 Age Grou	50 55	106 1,606,060.606 157 1,515,444.015	131 1,541,176.471 184 1,533,333.333	189 1,490,536.278	180 1,255,230.126	
Copy and paste into table on right or upload a csv with population and count information	Age (11 Age Grou	50 55 60	106 1,606,060.606 157 1,515,444.015 193 1,307,588.076	131 1,541,176.471 184 1,533,333.333 232 1,417,226.634	189 1,490,536.278 262 1,455,555.556	180 1,255,230.126 249 1,414,772.727	239 9
Copy and paste into table on right or upload a csv with population and count information	Age (11 Age Grou	50 55 60 65	106 1,606,060.606 157 1,515,444.015 193 1,307,588.076 219 1,066,731.612	131 1,541,176.471 184 1,533,333.333 232 1,417,226.634 267 1,181,415.929	189 1,490,536.278 262 1,455,555.556 323 1,297,188.755	180 1,255,230 126 249 1,414,772.727 325 1,335,799.425	239 99 343 1,04
Copy and paste into table on right or upload a csv with population and count information Browse ClaytonSchifflers1987StatMed.csv	Age (11 Age Grou	50 55 60 65 70	106 1,606,060.606 157 1,515,444.015 193 1,307,588.076 219 1,066,731.612 223 849,847.561	131 1,541,176.471 184 1,533,333.333 232 1,417,226.634 267 1,181,415.929 250 902,527.0758	189 1,490,536.278 262 1,455,555.556 323 1,297,188.755 308 1,010,830.325	180 1,255,230.126 249 1,414,772.727 325 1,335,799.425 412 1,115,322.144	239 99 343 1,04 358 93
Copy and paste into table on right or upload a csv with population and count information Browse ClaytonSchifflers1987StatMed.csv	Age (11 Age Grou	50 55 60 65 70	106 1,606,060.606 157 1,515,444.015 193 1,307,588.076 219 1,066,731.612 223 849,847.561	131 1,541,176.471 184 1,533,333.333 232 1,417,226.634 267 1,181,415.929 250 902,527.0758 214 636,715.2633	189 1,490,536.278 262 1,455,555.556 323 1,297,188.755 308 1,010,830.325	180 1,255,230.126 249 1,414,772.727 325 1,335,799.425 412 1,115,322.144	239 99 343 1,04 358 93



How it works

28

How it works

Model Outputs in Excel

File	Hom		Page Layou			Review	View								. ×		Σ AutoSum		? -	_
	° [Ca	alibri	· 11 ·	A A =	= =	\$\$/	🖥 Wrap Text	Ge	neral	*	<u></u>			←	*		Fill *	Ż	ñ	
Paste		3 <u>I</u> <u>U</u> -	🗄 🔹 🌺	• <u>A</u> • =	≣≣		📑 Merge & Ce	nter - \$	- % ,	00. 0. → 0.♦ 00.	Conditional				Delete Fo	ormat	Clear *		Find &	
lipboa	rd 🖬	Fo	int	5		Alignmer	ıt	G.	Number	Ę.	Formatting	Styles	Styles *	Ŧ	Cells	Ť		Filter *	Select *	
npood	A1	• (e)	f _x	-		Alightite			- Number			Styles			Cens		-	anng		
		. (760																
																				-
	А	В	С	D	E	F	G	Н	1		J	K	L	М		N	0	Р	0	
1 Ag		Percent.pe C	CILo	СІНі																
2	27.5	2.349	-1.323	6.157					Le	ocal D	rifts witl	n Net D	rift							
3	32.5	-0.803	-3.708	2.19													_			
4	37.5	1.325	-0.574	3.259																
5	42.5	1.839	0.526	3.169		6														
6	47.5	1.954	0.962	2.955																
7	52.5	2.14	1.329	2.957																
8	57.5	2.364	1.668	3.065		4														
9	62.5	2.058	1.437	2.684																
10	67.5	1.994	1.417	2.574		ar														
11	72.5	1.969	1.38	2.561		ĕ ₂	Q			~	_0_	-0-	~							
12	77.5	1.778	1.058	2.503)er			\sim	-0			0	0	~	-0				
13						цр			9											=
14						Percent per Year		/												
15						Per		\backslash /												
16						_		8												
17																				
18						-2														
19																				
20																				
21						-4	-	V												
22							L													
23							30		40		50	60)	70		80	0			_
24											Age									_
25											, .gc									
26 27																				

Conclusions

- What does it do? The tool fits the APC Model and serves up Model Outputs.
- Why is that important?

Many cancers present complicated patterns. The outputs complement and extend standard descriptive methods.

• Who built it, and how?

BB – concept, design, computations CBIIT – "Webification"

• How do I use it?

http://analysistools.nci.nih.gov/apc/